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ABSTRACT
Rapid growth of deep learning models in recent years for robot and

fraud detection has led to significant improvement in precision and

recall but has also created a challenge for explainability and trust

in the model decisions. In this paper, we propose a scalable multi-

tiered framework that generates explainable network request level

signatures for crawler bots on a large e-commerce advertising pro-

gram. Depending on the bot traffic distribution, the framework uses

a combination of volumetric aggregation, decision trees and predic-

tive deep learning models based on weak labels to generate precise

and explainable bot signatures, achieving 87.9% coverage over a

black-box crawler detection system comprising of multiple deep

learning models and heuristic techniques. We further demonstrate

that the learnt signatures are more robust in time when compared

to traditional IP level bot denylists and reduce false negatives for

the black-box crawler bot detection system. Explainable network

signatures also enable manual inspection and help with attributing

traffic to bot toolkits, which not only improves trust in the black-

box system decisions but also provides insights into the evolving

bot landscape.
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1 INTRODUCTION
Robotic traffic exists on the web for a wide range of reasons span-

ning across crawlers and scrapers, price grabbers, automation tools,

DDoS attacks, ad fraud, etc. With advances in machine learning,

robot and fraud detection models have evolved to use a large variety

of input features, and modeling techniques have transitioned from

classical tree-based models to sophisticated neural networks. While

neural network based techniques lead to higher precision and recall

due to their ability to model rich feature interactions, they make it

more difficult to explain and analyze model decisions. Considering

the high monetary impact of robotic traffic in online advertising,

and absence of ground truth bot labels at scale, explainability is

essential for increased trust in black-box model predictions and

understanding evolving robotic behaviors.

We explore the problem of crawler bot detection on a large-scale

e-commerce advertising program. Crawler traffic in advertising
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refers to robotic traffic that leads to large number of ad impres-

sions but almost no clicks - leading to anomalously low click to

impression ratio, also known as click-through rate (CTR). The bot

detection system for any ad program comprises of multiple sophis-

ticated machine learning models and techniques that classify an ad

impression request as robotic or human. The goal of this paper is

to build techniques that generate precise and human explainable

rules (signatures) for bot classification and also maximize coverage

of these rules over impressions marked as robotic by the black-box.

We learn these explainable rules based on fields available in the

network logs of the ad request because bots are known to exhibit

unique signatures based on these network attributes. The rules can

then be investigated manually for spoofing or can be attributed to

known bot traffic generation toolkits. High coverage of these rules

on bot traffic flagged by the black-box system not only increases

human confidence in decisions of black-box machine learning mod-

els, but also allows us to build mitigation techniques for novel bots

and toolkits.

One of the key challenges in generating rules from network logs

is the high cardinality of the individual fields in the dataset, which

can take millions of unique values. High cardinality features make

learning rules computationally expensive and overly complex due

to the combinatorial search space, even while using greedy search

approximations like in a decision tree. In this paper, we present a

scalable framework for generating explainable rules derived from

high cardinality input fields in a binary classification setting for

robot detection. The framework approaches rule generation in a

multi-tier fashion depending on the traffic volume across features,

and uses a combination of heuristics, decision tree and predictive

modeling with deep neural networks. We benchmark the precision

and coverage of the explainable rules generated by the framework

on the bot traffic detected by black-box system.

The paper is structured as follows: Section 2 formalizes the prob-

lem statement, Section 3 describes the related work and Section 4

describes the multi-tier modeling framework for rule generation.

This is followed by a description of experiments and results in Sec-

tion 5. We highlight key learnings and insights from the generated

explainable bot signatures in Section 6 and conclude in Section 7.

2 PROBLEM FORMULATION
We approach the problem of learning rules to explain binary clas-

sification decisions of a black-box crawler bot detection system

consisting of multiple machine learning models and heuristics. For-

mally, let 𝑋 be a set of all ad impression requests, and 𝑍 be an

indicator variable representing if the ad impression was clicked

on. The black-box crawler bot detection system generates a binary

prediction 𝑃 for all impressions in 𝑋 , classifying them as robotic
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(0) or human (1). The goal of the rule generation module is to use

fields in the network logs which represent every impression in𝑋 by

high cardinality features 𝐹1, 𝐹2, . . . , 𝐹𝑛 , to generate high precision

human understandable robotic rules that also maximize coverage

over impressions marked as robotic by the black-box system. We

note that the formulation does not make any assumptions on the

feature set 𝐹 being used by any of the models or heuristics in the

black-box.

3 RELATEDWORK
Robot detection. Traditional bot detection approaches use curated

static lists of IPs and UserAgents (UA) based on industry-wide

intelligence and historical bot patterns. Attempts to identify more

granular entities like UA-IP combinations, UA regex based rule

mining have been made, but such approaches suffer from low recall

and precision because IPs can consist of mixed human and bot

traffic, ISPs regularly rotate addresses and these fields can be easily

spoofed or get stale. Compared to broad identifiers like IP, UA,

etc., attributes extracted from network requests are very difficult

to manipulate and spoof. Although there has been relatively less

work on this due to lack of data, approaches like [6] extracted

sub-strings of HTTP headers as signatures of fraudulent traffic.

Similarly, [2] clustered HTTP headers based on a normalized form

of string distances, with the cluster thresholds being manually

tuned. More recent works approach bot detection as a real-time

system that is capable of swiftly adapting to evolving bot and human

traffic patterns by relying on weakly supervised deep learning

based models [9], improving the overall precision and recall over

traditional list and rule based systems but trading-off performance

with explainability. Building on [9], [3] has shown that pre-training

embeddings of network request attributes can enable better bot

detection.

Explainable AI. Approaches to explain model decisions involve

either computing feature importance [7, 10, 12] for individual ex-

amples or the overall model or distilling the model predictions into

a set of human understandable rules. Using feature importance

to explain model decisions in deployed settings has multiple chal-

lenges. First, the feature importance scores vary significantly based

on the technique used to compute the scores - commonly known

as the disagreement problem [5]. Second, for models with large

number of input features, a large subset of features can get high

importance scores, or in case of high cardinality features where em-

bedding based inputs are preferred, high importance scores may be

assigned to only specific embedding dimensions - leading to poor

explainability. Finally, in deployed bot detection systems where

potentially multiple models are used to detect different types of

bots (example - IP based vs user-id based), one would have to use

multiple feature importance techniques for different models, mak-

ing it difficult to assign a single importance score to a feature that is

shared across models. In contrast, rule mining based explainability

techniques treat the underlying predictive model or a set of models

as a black-box and work based on a fixed set of feature inputs and fi-

nal black-box output predictions [1, 8, 13]. Rules despite being more

explainable, can often have less coverage and efficacy as compared

to predictive models - hence, there has been work towards explor-

ing the use of externally available relevance information that can

aid the creation of rules to explain neural network style predictive

models [11].

4 MODELING FRAMEWORK
In this section, we describe the multi-tiered approach to learn ex-

plainable signatures (also referred as rules) on high cardinality

inputs. To be able to classify a rule as a crawler, we estimate its

click-through rate (CTR) and mark rules with anomalously low

CTRs as crawlers. The framework utilizes the fact that feature value

tuples (𝐹1, 𝐹2, ..., 𝐹𝑛) follow a long-tail frequency distribution when

inputs are high cardinality. At the head of the distribution, where

the traffic volume is large for each feature tuple, click-through rate

(CTR) can be directly estimated with high confidence just by volu-

metric aggregation. For the tail, we present a scalable decision tree

learning model that learns a series of rules to aggregate across mul-

tiple tail feature tuples to derive a high confidence CTR estimate.

For the remaining tail feature tuples which could not be aggregated

by the decision tree rules due to sparse traffic volumes and tree

scalability constraints, we build a separate deep learning model to

estimate the robotic probability with help of other auxiliary fea-

tures and weak labels. We now provide detailed descriptions for

each of the three modules.

4.1 Volumetric Aggregation
The simplest approach to generate rules is to enumerate all fea-

ture tuples (𝐹1, 𝐹2, ..., 𝐹𝑛) alongside their impression volumes and

CTRs. Feature tuples that have more than a minimum volume of

impressions and CTR less than a specified threshold are outputted

as robotic rules. The CTR threshold is determined manually by trad-

ing off False Positive Rate (FPR) with coverage over the black-box

model. This technique works well for feature tuples at the head of

the traffic distribution where large volumes of traffic is observed

per feature tuple and CTR estimates are highly confident, which is

ensured by the minimum impression volume condition. Hence, the

generated rules contain one equality clause for all features, which

are combined using an AND condition. An example is given below:

𝐹1 = 𝑓1 AND 𝐹2 = 𝑓2 AND 𝐹3 = 𝑓3 ... AND 𝐹𝑛 = 𝑓𝑛 (1)

4.2 Decision Tree based Rule Generation
While obvious bots with fixed features can be detected by volumet-

ric aggregation, more sophisticated bots can rotate some or all of the

feature values, requiring sub-tuple level aggregation to get reliable

CTR estimates. Since the features have very high cardinality, the

number of possible sub-tuple combinations is combinatorially large

for enumeration. Hence, we resort to a greedy approximation to

learn sub-tuple level rules by training a standard decision tree based

classifier on all impressions 𝑋 with labels as 𝑍 (is-Click). Each im-

pression is represented by a concatenation of the one-hot encoding

of the individual features 𝐹𝑖 , and cross-entropy based information

gain is used as the split criterion. CTR is then estimated at the leaf

nodes, and paths to leaf nodes with CTR below a specific threshold

are outputted as robotic rules. Hence the rules can now include

both equality and non-equality clauses for individual features and

may not contain all features. Example path to leaf node:

𝐹1 = 𝑓1 AND 𝐹2 ≠ 𝑓2 (2)
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4.2.1 Scaling Decision Tree Learning. One of the key challenges in

the above decision tree formulation is to scale the training of the de-

cision tree on billion-scale ad impression data and large cardinality

inputs. We use two key insights to achieve this. First, individual fea-

tures despite being high cardinality, also follow a long tail frequency

distribution. To be able to estimate CTR confidently at the leaf node,

similar to volumetric aggregation, we lower bound the number of

impressions allowed in the leaf node. Hence, given the tail distribu-

tion, majority of the values in the high cardinality feature will never

be considered as candidate splits and can be dropped from the input

one-hot representation by mapping them to a dummy value rep-

resented by the <unk> token. While, this significantly reduces the

length of the feature vector input to the decision tree, we still have

billions of rows for individual impressions. Here, we use the second

insight, that multiple impression events have the same network

features - allowing us to reduce the data to only two rows (one per

label) for every unique feature tuple by adding a sample weight

column representing the impression count of the (𝐹1, 𝐹2, ..., 𝐹𝑛, 𝑍 )
combination post the one-hot indexing. The number of impressions

at the leaf node is then computed as the sum of sample weights of

rows classified to the particular leaf.

4.3 Predictive Model using Deep Learning
Since a minimum impression threshold was applied at the complete

feature tuple level in volumetric aggregation and at sub-tuple level

in the decision tree, there would still be remaining tail feature tuples

which would not have been considered by either of the techniques.

For such tuples, since CTR could not be estimated directly with

high confidence, we build a predictive model to classify them as

robotic or human. As building a predictive model on sparse features

alone will overfit, we make use of auxiliary features about the ad

request and weak labeling techniques to predict the robot proba-

bility of individual impressions. For rule generation, we aggregate

the impression level robotic probabilities at unique network feature

tuple level by computing the mean. The mean probabilities are then

thresholded based on FPR, outputting a robotic list of tuples similar

to the format used in volumetric aggregation. We now describe the

training setup for the predictive model.

Features. Since the network features alone would lead to overfit-

ting due to the high cardinality, we augment the ad request with a

variety of features including: (1) Frequency and velocity counters

for users’ page requests over various time periods ranging from few

seconds to hours; (2) User-entity counters indicating distinct users

from an IP address to help disambiguate IPs with multiple users

and normalize their impression volumes; (3) Time of ad impression;

(4) Logged-in status of the user; (5) Embedding-based inputs for the

users’ identifier and network attributes with the embedding matri-

ces being learnt end-to-end with the training objective. To handle

the long tailed distributions, an out of vocabulary embedding is

included in all embedding look-up tables.

Labels. Since accurate ground truth labels are unavailable at

scale, we resort to weak supervision for labeling - where we iden-

tify high-hurdle activities that are more likely to be performed by

humans than a bot. Specifically, we label ad requests that led to

a purchase as human(1). To further increase human label density,

we also label ad requests from customers with high RFM score as

human. A high RFM score denotes that customers have purchased

recently, frequently and with a high monetary value. All other

requests are labeled as robotic(0).

Model. The embeddings based input are concatenated with other

tabular features and passed to a three-layered feedforward neural

network, with 1024 neurons each and ReLU activation in the hidden

layers. The output of the final layer is passed through a sigmoid

activation unit to get the robotic probability for an impression. To

avoid overfitting, we apply L2 regularization with the regularization

constant as 0.001 to all the embedding layers, and the second and

third feedforward layer.

Training. Since our dataset is highly skewed towards the “robot”

label (0), we assign a sample weight 𝑤𝑖 = 𝐶
𝑁𝑖

to the 𝑖𝑡ℎ sample,

where𝐶 is a constant and 𝑁𝑖 denotes the number of impressions in

the (ℎ𝑜𝑢𝑟𝑖 , 𝑑𝑎𝑦𝑖 , 𝑙𝑜𝑔𝑔𝑒𝑑_𝑖𝑛𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖 ) bucket. We use weighted binary

cross entropy loss optimized using Adam [4] with learning rate

5𝑒 − 5 for training our model.

5 EXPERIMENTS
5.1 Dataset
We learn the signatures on 1 day of impression data generated

from the ad program. Following the scaling technique mentioned

in Section 4.2.1, the concatenated one-hot input feature vector

length in the decision tree reduces by 6 orders of magnitude and

the number of input rows reduce by 3 orders of magnitude.

5.2 Metrics
We define the following metrics to evaluate the bot detection and

explainability efficacy for the proposed techniques:

(1) Invalidation Rate (IVR) This is defined as the fraction of

total impressions marked as robotic by the algorithm.

(2) False Positive Rate (FPR) This is defined as the fraction

of human impressions invalidated by the algorithm. Since

we do not have ground truth labels, FPR is approximated

by using purchasing users as a proxy for the distribution of

human labels.

(3) Black-Box Coverage This indicates the fraction of impres-

sions flagged as robotic by the black-box system that overlap

with the rules generated by the proposed technique.

5.3 Results
Since crawler bots typically do not use customer accounts, we

restrict our evaluation to non-loggedin traffic in this paper. The

metrics for the individual techniques and the combined framework

are reported in Table 1. We also report the exclusive invalidation

rate for each technique, which refers to the invalid requests that

were not detected by the other two techniques in the framework.

We note that all reported IVR and FPR metrics in Table 1 are relative

to the black-box baseline.

5.4 Discussion
Results in Table 1 show that the proposed framework was able

to generate explainable rules that cover 87.91% of the bot traffic
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Table 1: Performance Metrics relative to Black-Box

Algorithm

Relative

IVR

Relative

FPR

Relative

Exclusive

IVR

Black-Box

Coverage

Volumetric

Aggregation

47.37% 6.40% 1.48% 46.20%

Decision Tree 82.15% 8.14% 20.28% 81.06%

Deep Predictive

Model

66.90% 8.14% 2.90% 65.58%

All Three

Algorithms

89.79% 18.61% N/A 87.91%

detected by the black-box system while incurring only 18.61% of

the black-box FPR - indicating the highly precise nature of these

rules. Volumetric aggregation has the lowest black-box coverage

since it does not operate on the tail of the traffic distribution. It also

has the lowest exclusive IVR because the obvious bots detected by

volumetric aggregation can also be detected by the decision tree.

Any exclusive IVR for volumetric aggregation is because of the

lower impression volume threshold used in volumetric aggregation

when compared to the decision tree because of scaling limitations.

Decision tree is able to generate high precision rules with extremely

high coverage due to the sub-tuple level aggregation capabilities.

Exclusive IVR of the predictive deep learning model indicates that

it detected bots at the tail of the distribution where even the sub-

tuple level aggregation in the decision tree was sparse. While the

expectation was that the predictive model should also have been

able to detect majority of the bots flagged by the decision tree

and volumetric aggregation, its lower invalidation rate suggests

that more work is needed to refine the weak labeling strategy

and training technique, which we plan to explore in future work.

The proposed framework also achieves additional 1.88% relative

exclusive IVR over the black-box indicating that the rules also

help enhance overall bot detection by covering some of the false

negatives of the black-box.

6 EXPLAINABILITY ANALYSIS
6.1 Temporal Durability of Network Signatures
The key reason for selecting network attributes to generate explain-

able signatures is their temporal durability - that is, bots typically

have a unique network attribute signaturewhile they rotate or spoof

fields like IP Addresses and UserAgents. Table 2 demonstrates the

temporal durability of the rules generated by the proposed tech-

niques on a given day, over a span of 1 week. We compare this with

durability of robotic IPs generated via the deep predictive model -

as IP was a feature in the model, robotic IPs can be generated by

aggregating the robotic probabilities at IP level instead of network

features.

We observe that the IP-based list significantly deteriorates in

invalidation rate, indicating bots rotate their IP address to evade

detection. The invalidation rate for volumetric aggregation and

decision tree based rules increases or remains flat, as these are high

confidence rules which continue to detect bots even as the IP rotates.

Table 2: Temporal IVR relative to 𝐷𝑡ℎ day IVR of Signatures
For Demonstrating Durability of Network Features

Algorithm Signature D+1 D+2 D+3 D+4 D+5 D+6

Deep Predictive Model IP Address -32.1% -42.3% -44.9% -46.5% -47.9% -48.7%

Volumetric Aggregation Network Features -4.1% +17.4% +18.6% +14.9% +13.0% +12.9%

Decision Tree Network Features -5.3% -1.8% -1.0% -1.1% -0.6% -1.3%

Deep Predictive Model Network Features -25.7% -8.5% -7.7% -10.1% -12.5% -12.8%

The invalidation rate for network rules from the predictive model

drops slightly because they cover sparse feature tuples suggesting

that daily model retraining and inference is required to maintain

high explainability on sparse signatures.

6.2 Bot Toolkit Identification
With explainable signatures enabling manual inspection, we are

able to attribute network signatures to different types of bot toolkits,

providing insights into how robotic traffic was generated. We cate-

gorize various bot toolkits identified in an initial manual inspection

as follows:

(1) Automated Browsers Web scraping and crawling tasks

commonly use browser instances running in headless mode,

which means the browser runs without a visible browser

window at much lower compute resources. Few frameworks

also provide a programmatic interface to control and interact

with headless browsers.

(2) HTTP LibrariesMost modern programming languages like

Python and Java have libraries that enable users to make

HTTP requests with options for setting request headers, han-

dling redirects, and handling response data. This makes them

a popular choice among developers to build various crawling

frameworks, which in turn are used by bot operators. We

found that a subset of these bots could also be characterized

as malicious as they actively try to hide themselves using

various techniques such as User-Agent spoofing.

(3) Crawling as a Service Bot operators crawl e-commerce

sites to collect product catalog, reviews and price data to

generate analytics and intelligence for their customers. Ana-

lyzing the network attributes of such bot requests revealed

usage of customized Python frameworks.

7 CONCLUSION AND FUTUREWORK
We presented a scalable multi-tiered framework to learn explain-

able rules for a black-box crawler bot detection system, that works

across different parts of the traffic distribution. We show that the

explainable rules generated are not only highly precise and have

high coverage but also provide a temporally durable mechanism

to identify bots while reducing the overall false negatives. Having

high coverage explainable network signatures also help us to clas-

sify and understand the bot landscape, thereby increasing trust in

the black-box machine learning systems. In future work, we plan to

experiment with improved weak supervision and self-supervision

techniques to enhance the performance of the predictive model

and expand the decision tree framework to consume features be-

yond network attributes to generate more precise and higher recall

signatures.
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