
Overview

Using Program Synthesis and Inductive Logic Programming
to solve Bongard Problems

Atharv Sonwane*, Sharad Chitlangia*, Tirtharaj Dash, Lovekesh Vig,
Gautam Shroff and Ashwin Srinivasan

Bongard Problems

Solving reasoning tasks requires the use of suitable
representations which can encapsulate relevant concepts.
Such a representation should also allow flexibility in
abstraction formation at various levels in the hierarchy.

In our 3-staged inductive programming system, we use
decorated graphical programs to represent the images for
Bongard Problems. We postulate that this allows for formation
of concepts:
● At the first stage through invention by abstraction in

functional λ-calculus programs using Dreamcoder. Such as
learning a polygon from line instructions.

● By allowing for additional methods of information
extraction from the solution program at the decoration
phase during a debugger style step-by-step execution of the
λ-calculus programs.

● On top of the decorated functional λ-calculus programs,
using logical programs, through Inductive Logic
Programming, to learn higher level concepts such as
Triangle above Square, Concavity / Convexity

Visual Reasoning tasks with 6 positive and 6 negative
example images for a particular concept. Given the
examples images, the task is to find the differentiating
concept. For example -

Concept: Triangles above squares.

Positive ExamplesNegative Examples

Method Results

Next Steps

1. Synthesis: All positive and negative images for a Bongard
Problem are input to Dreamcoder to obtain a library of higher
level primitives and solution programs for each image

2. Decoration: Each Program is converted into a decorated state
transition diagram via a debugger-styled execution.
Transitions are decorated with primitive calls and states with
information such as the position and orientation of the cursor
during the program execution.

3. Theory Identification: A FOL representation of the transitions
using has_info and trace predicates, along with
comparison predicates, are input, as background knowledge,
to Aleph (an ILP Engine) to find a theory that differentiates
between the positives and negatives.

Our system is able to solve 8 of the 14 Bongard Problems
considered. Some are illustrated below -

Our work can be improved in 3 key areas:
● Graphical Program Synthesis:
○ A learned metric for comparison rather than pixel level

comparison
○ Execution-guided synthesis rather than enumeration

● State Decorations:
○ Learned automated feature extractors to work on top of

produced programs/images.
● Final theory learning step:
○ Construction of meta-rules among programs of different

problems to learn general concepts such as smallness, etc
○ Construction of meta-rules, in the 2nd order, over

sub-programs of the same problem

We evaluate system on adaptations of: #4, #14, #16, #21,
#23, #24, #36, #40, #53, #60, #75, #85, #94 and #96 from
www.foundalis.com/res/bps

Concept
Invented Primitives

(Dreamcoder)
Theory Explanation

Anti-
clockwise vs
Clockwise

BP #16

f2(a0), f3(a0): both
draw anti- clockwise
spirals with different
step lengths and with a0
controlling tightness of
the spiral.

pos(A):-
has_info(A,B,f3,C,[D,E,F]).

pos(A):-
has_info(A,B,f2,C,[D,E,F]).

Presence of invented
primitive for drawing spirals
that are anticlockwise.

Smaller
shape
present

BP #21

f1(a0, a1): Draw an
a0-sided polygon with
sides of length a1

pos(A): -
has_info(A,B,rtfwint,C,[D,E,
F]), C=[G|H], H=[I|J], G>I,
has_info(A,K,f1,L,[D,E,F]).

pos(A):-
has_info(A,B,f1,C,[D,E,F]),
C=[G|H], H=[I|J], G>I.

Program contains a move
primitive where the division
factor for angle is greater
than multiplication factor for
distance, or there is a
polygon with side length less
than number of sides.
Indicating the shape is small.

Triangle
above
Square

BP #36

f1(a0): Draws triangle
of side length a0.

f3(a0): Draws square
of side length a0

pos(A):-
has_info(A,B,f3,C,[D,E,F]),
has_info(A,G,f1,H,[I,J,K]),
J>E.

Triangle exists with y
coordinate greater than that
of square

Enclosed
shape has
fewer sides

BP #53

f1(a0, a1): Draw an
a0-sided polygon with
sides of length a1

pos(A):-
has_info(A,B,f1,C,[D,E,F]),
has_info(A,R,pt,Q,[K,L,M]),
has_info(A,I,f1,J,[K,L,M]),
C=[G|H],J=[N|O],O=[P|Q],
G>N, N>P.

Smaller polygon (having
length of side smaller than
number of sides) has has
fewer sides than larger
(enclosing) polygon.

has_info(+Program,-State,#Primitive,-Args,[-X,-Y,-Angle])
trace(+Program,[-state0,-state1,-state2, ...])

The main reasons where the system fails are -
● Representation: Inability to represent solid fills, arbitrary

curves and other irregular features using current DSL.
● Search: High number of shapes / lines to be drawn meaning

intractable search due to large program lengths of the solution.

Predicate Definitions

Our system
● GOFAI == Interpretable
We explore the use of decorated
programs to represent images for
visual reasoning tasks because -
● Ability to identify and represent

higher level concepts as learned
primitives (through
Dreamcoder)

● Interpretability of logical
theories learnt on top of
decorated programs

We postulate that the use of
decorated graphical programs as
representations in our 3 staged
inductive programming system
allows formation of concepts:

Our 3 staged inductive
programming system allows
concept formation at various
levels:
● At the perceptual level,

individual line instructions into
higher level primitives such as
polygons through Dreamcoder

● Ability to introduce additional
methods of information
extraction through a debugger
style execution of program.

● Introduction of external
information by reconciliation of

● Comparison of the higher level
concepts such as Triangle above
Square, Concavity / Convexity

