
Improving Perception via Sensor Placement:
Designing Multi-LiDAR Systems for Autonomous Vehicles

Sharad Chitlangia1*, Zuxin Liu2*, Akhil Agnihotri3, Ding Zhao2

1BITS Pilani, 2CMU, 3J. P. Morgan Chase and Co.
f20170472@goa.bits-pilani.ac.in, zuxinl@andrew.cmu.edu, agnihotri.akhil@gmail.com, dingzhao@cmu.edu

Abstract

Recent years have witnessed an increasing interest in
improving the perception performance of LiDARs on au-
tonomous vehicles. While most of the existing works focus
on developing novel model architectures to process point
cloud data, we study the problem from an optimal sens-
ing perspective. To this end, together with a fast evalu-
ation function based on ray tracing within the perception
region of a LiDAR configuration, we propose an easy-to-
compute information-theoretic surrogate cost metric based
on Probabilistic Occupancy Grids (POG) to optimize Li-
DAR placement for maximal sensing. We show a correlation
between our surrogate function and common object detec-
tion performance metrics. We demonstrate the efficacy of
our approach by verifying our results in a robust and re-
producible data collection and extraction framework based
on the CARLA simulator. Our results confirm that sensor
placement is an important factor in 3D point cloud-based
object detection and could lead to a variation of perfor-
mance by 10% ∼ 20% on the state-of-the-art perception
algorithms. We believe that this is one of the first studies to
use LiDAR placement to improve the performance of per-
ception.

1. Introduction
LiDAR sensors are becoming the critical 3D sensors for

autonomous vehicle (AV) since they could provide accurate
3D geometry information and precise distance measures un-
der various driving conditions. The point cloud data gener-
ated from LiDARs has been used to perform a series of per-
ception tasks, such as object detection and tracking [32, 31].
Unlike the RGB image data from camera sensors, point
cloud data is irregular and sparse, which brings great chal-
lenges for the 3D object detection task.

High-quality point cloud data and effective perception
algorithms are usually both required to achieve accurate 3D

*equal contribution

object detection in practice. A number of studies propose
to improve the 3D object detection performance for point
cloud data by modifying the underlying perception algo-
rithm by assuming that the data is rich and of high qual-
ity. This is usually done on public datasets using novel
model architectures and effective data processing meth-
ods [32, 31]. However, there is only sparse literature consid-
ering the perception and detection problem from a data ac-
quisition or LiDAR sensing point of view [23, 18]. We be-
lieve that this new perspective should be equally important
for real-world AV applications since poor-quality sensing
data could easily corrupt the perception algorithm and lead
to poor performance [8, 22]. In addition, as suggested by
Liu et al. [23], different LiDAR configurations will produce
different point cloud distributions, which may affect the
performance of downstream perception tasks. Therefore,
we aim to investigate the interplay between LiDAR sensor
placement and perception performance for AVs. We shall
use placement and configuration interchangeably through-
out this paper.

(a) Apple (b) Cruise

(c) Ford (d) UM PERL Lab

Figure 1: LiDAR configurations used in different au-
tonomous vehicles [1, 3, 4, 2, 18].

We are interested in this topic for several reasons. On the
one hand, given a specific perception algorithm, we want
to evaluate the effectiveness of different LiDAR placement
layouts based on the perception performance. On the other

ar
X

iv
:2

10
5.

00
37

3v
1

 [
cs

.R
O

]
 2

 M
ay

 2
02

1

hand, the LiDAR placement may affect the sensing proce-
dure and the point cloud input for the perception algorithm,
which influences the perception quality [18, 23, 26]. More-
over, LiDAR is an expensive sensor, so it would be benefi-
cial to minimize the LiDAR sensor deployment cost while
maintaining the perception performance, which could be
done by sensor placement optimization. As shown in Fig-
ure 1, many companies’ self-driving cars are equipped with
more than 2 LiDARs, which may provide more effective
perception but the deployment cost would be high. Decreas-
ing the number of LiDAR sensors or the number of laser
beams may affect the perception system, but how to quan-
tify the loss of performance and could we mitigate this loss
by optimal LiDAR placement are questions that are rarely
studied in the literature. Therefore, thoroughly studying the
interplay between LiDAR sensor placement and perception
performance is an essential bridge to obtain the right bal-
ance between the perception performance and affordabil-
ity of AV perception systems, without sacrificing driving
safety.

In this paper, we study the perception system from the
sensing perspective. Particularly, we focus on investigating
the relation between LiDAR sensor placement and 3D ob-
ject detection performance. The contributions of this paper
are summarized as follows:

1. As far as we are aware, we are the first work to quan-
titatively study how LiDAR placement affects the 3D
object detection performance in a realistic simulation
environment.

2. We propose an information-theoretic cost metric to op-
timize the LiDAR sensor placement, and we show that
the surrogate metric is highly correlated with 3D object
detection performance. The surrogate cost is easy to
compute and could greatly accelerate the LiDAR sen-
sor placement optimization procedure.

3. We contribute an automated multi-LiDAR data collec-
tion framework, which is heavily grounded in realistic
traffic scenarios for strong reproducibility. We con-
duct extensive experiments based on the framework in
CARLA simulator [12] and provide insightful applica-
tion examples which could aid in more effective de-
ployment of LiDAR sensors on AVs.

The remainder of the paper is structured as follows:
Section 2 provides a brief overview of related work and
suggests the research gap in the existing literature. Sec-
tion 3 starts by formulation of the sensor placement opti-
mization problem and introduces the surrogate cost func-
tion. We present the simulation environment, data collec-
tion and evaluation along with comparative results in Sec-
tion 4. Then, Section 5 lists some promising applications

of our framework. Finally, Section 6 concludes with a sum-
mary of our contributions and directions for future research.

2. Related Work
The methods and frameworks proposed in this work re-

volve around optimizing the LiDAR sensor placement to
maximize point cloud based 3D object detection perfor-
mance surrounding an AV. Although literature is scarce in
this combined area, there has been research on the 3D ob-
ject detection and the LiDAR placement optimization topics
independently, which we discuss in this section.

3D object detection with point clouds. To keep up with
the surge in interest in autonomous vehicles, researchers
have tried to develop novel object detection, and more gen-
erally, perception algorithms for efficient point cloud-based
3D object detection. Majority of the previous methods de-
veloped use carefully crafted design which rely on the as-
sumption of rich and complete point cloud data and do not
take into account the variability of the underlying sensing
system [20, 25, 5, 28].

Over the years, there has also been progress in grid-based
and point-based detection methods for multi-sensor point
cloud data. Grid-based methods project the point cloud
data onto a plane for 2D treatment, and provide strategies
for multi-sensor data fusion [11, 19, 21]. However, these
methods are greatly limited by the kernel size of the con-
volution. To overcome this, a highly ubiquitous grid-based
sliding window approach has also been studied with respect
to point cloud detection [34, 13]. It relies on a popular
voting scheme which accelerates the exhaustive 3D win-
dow searching. However, it is only efficient for sparse data
points, similar to the framework by Su et al. [33], and could-
not be scaled to a dense point cloud, as observed in majority
of AV applications.

Point-based methods, on the other hand, directly ap-
ply on the raw point cloud, rather than on the converted
2D images. This enables them to have flexible perception
leading to robust point cloud learning [27, 35]. Generally
speaking, these point based methods have higher receptive
fields and higher computation costs than grid based meth-
ods. Therefore, to take advantage of lower computation of
grid based methods and higher sensing capabilities of point
based methods, Shi et al. [30] propose a robust framework,
PointVoxel-RCNN (PV-RCNN), to unify the two methods.
PV-RCNN utilizes a mixture of voxel Convolutional Neu-
ral Network (CNN) and PointNet-based set abstraction to
efficiently learn features from raw point cloud data. Com-
pared to conventional point-based methods, this framework
provides for richer context information leading to a more
accurate estimation of objects’ positions and superior per-
formance on the standard KITTI dataset [17]. More details
are provided in Section 4.

LiDAR placement for autonomous vehicles. One of

the most important factors critical to AV deployment is its
perception and sensing ability. With this respect, LiDARs
have been widely used because of their high real-time preci-
sion and their ability to extract extensive information from
their environment [24, 17, 37]. Since, for AVs, the percep-
tion ability of a LiDAR is sensitive to its placement [36, 14],
it is critical to develop a scheme that minimizes the uncer-
tainty among all its possible placements. To this extent,
Dybedal et al. [15] proposed to find the optimal placement
of 3D sensors using a Mixed Integer Linear Programming
approach, which is not scalable to AVs because of large
number of variables involved. Rahimian et al. [29] develop
a dynamic occlusion-based optimal placement routine for
3D motion capture systems, but do not take into account
variable number of sensors during its optimization routine.

There have also been some prominent advances to opti-
mize the placement of multiple LiDARs for AV while con-
sidering the perception performance. Mou et al. [26] for-
mulate a min-max optimization problem for LiDAR place-
ment with a cylinder-based cost function proxy to consider
the worst non-detectable inscribed spheres formed by the
intersection of different laser beams. However, their Mixed
Integer Linear Programming solver could hardly be applied
to a large number of LiDARs or laser beams because of its
exponential computational complexity, and moreover, their
optimization precision is limited. Liu et al. [23] improves
the previous work by using an intuitive volume to surface
area (VSR) ratio metric and a black-box heuristic-based op-
timization method to find the optimal LiDAR placement.
While their approach aims to minimize the maximum non-
detectable area, however, they assume a uniformly weighted
region around the AV. In addition, they do not explicitly
reveal the relation between the LiDAR placement and the
perception performance, which could be done in realistic
simulation environment or by real-world testing.

Our work overcomes these limitations of previous Li-
DAR placement works by utilizing a data-driven surro-
gate cost function with a ray-tracing acceleration approach.
Since different cities may have totally different road infras-
tructure layouts and traffic patterns, we aim to optimize the
LiDAR configurations accordingly by analysing collected
data and maximizing the information gain so that the over-
all perception capability could be improved. Furthermore,
we combine the two fields - 3D object detection and LiDAR
placement - together and propose a systematic framework to
quantitatively describe the relation between LiDAR sensing
and perception. More details are provided in Section 3.

3. Method
In this section we introduce the LiDAR sensor and its

perception areas. The problem of optimal LiDAR place-
ment is formalized and related definitions of region of in-
terest (ROI) and Probabilistic Occupancy Grid (POG) are

ith laser beam
and pitch angle

θi

Conical
perception
areas

X

Y

Z

Figure 2: Schematic showing a LiDAR sensor forming per-
ception cones in the ROI to collect point cloud data.

Z

X

Y

LiDAR beams rotate and segment
the ROI into cones (subspaces)

Points sampled
by the LiDARs

Figure 3: LiDAR sensor mounted on an AV samples points
from the ROI and generates a point cloud transformed to
the AV’s coordinate system. These points along with their
corresponding 3D bounding boxes generate the POG.

presented. Finally, we describe how to compute the surro-
gate cost for LiDAR configuration optimization.

3.1. Problem formulation

We begin this section by defining the LiDAR perception
model and the ROI, both of which form the basis of our
optimal configuration problem.

As shown in Figure 2, we model a LiDAR sensor as a
collection of multiple beams. Each beam makes a pitch an-
gle with the XY plane and rotates with a uniform speed
having the direction of rotation along the positive Z axis.
As each beam completes one rotation, it forms a conical
surface (area) and we assume its perception to be all points
in this area. Thus, total perception of a LiDAR is the union
of all these conical areas formed by rotation of its beams in
the ROI, which we describe next.

We define our ROI to be the space where we keep track
of objects to be detected. To account for LiDAR’s lim-
ited range of detection, we fix the cuboid dimensions of
the ROI to be [60,20,4] meters in the XY Z coordinate sys-
tem throughout the paper, as shown in Figure 3. The ROI
width (Y axis) is shorter than length (X axis) because an
AV’s longitude velocity is usually lesser than its latitude

X

24

26

28

30

32

34Y

5
6

7
8

9

Z
0.5

2.0

3.5

0.0

0.2

0.4

0.6

0.8

1.0

3D Bboxes
mapped to POG

Figure 4: Schematic showing how 3D bounding boxes
(Bboxes) are mapped to the ROI to generate a POG. Each
cube in the POG has a probability given by Equation 1.

velocity and thus we want the AV to see further along X
axis. We then discretize ROI into cubes with a fixed reso-
lution, and represent the ROI as a collection of cubes. For
instance, we use cubes of side 0.05 meters in the experi-
ments, which results in a collection of 60

0.05 ×
20
0.05 ×

4
0.05 =

38400000 cubes to represent our ROI, which is denoted by
{c1, c2, ..., c38400000}. The ROI provides us with a fixed
perception domain around the LiDAR, from which LiDAR
beams accumulate maximum information. Similar LiDAR
sensor modeling and ROI definition could also be found in
Liu et al. [23] and Mou et al. [26].

Then, the problem of optimal LiDAR placement is for-
mulated as finding a LiDAR configuration on the AV such
that the cost function is minimized in the ROI. To evaluate
the perception performance of a LiDAR placement, three
commonly used metrics in 3-D Object Detection — Bird-
eye view (BEV) detection, 3-D Intersection Over Union and
Orientation Similarity — are used. The details of those met-
rics could be found in Kitti dataset [17]. However, directly
using those metrics to optimize the LiDAR placement is ex-
tremely inefficient, as each optimization iteration may take
days to collect and annotate new data based on new LiDAR
placement, train detection models based on the data, and
finally get the metrics. Therefore, we propose a surrogate
cost function to accelerate the LiDAR placement optimiza-
tion procedure.

3.2. Surrogate cost function

To maximize perception capability, an intuitive measure
is to collect as much information as possible given a budget
of LiDARs. While Liu et al. used the notion of maximum
non-detectable subspaces to reflect perception performance,
we propose a data-driven measure to quantify the informa-
tion gain. A key insight here is that AVs are deployed in dif-
ferent cities, so they encounter varied conditions including
but not limited to road infrastructures and traffic patterns.
Therefore, we aim to optimize LiDAR placement such that
the lasers could focus on important areas around the AV
based on customized datasets of different cities or scenar-
ios.

To this end, we propose to model the ROI, which is rep-
resented by a collection of cubes, as a Probabilistic Occu-
pancy Grid (POG) by calculating the probability of each
cube to be occupied. This grid is created by registering in-
formation about the 3D bounding box (Bbox) positions of
objects of interest, such as cars and pedestrians. We will
use car as an example throughout the paper. Suppose we
have a Bbox dataset DT = {d1, d2, ..., dT }, where T repre-
sents the total size. Each frame dt, (t ∈ {1, ..., T}) contains
N 3D Bboxes of cars {bt1, ..., btN} within ROI of the ego-
vehicle, and each Bbox is parameterized by its center co-
ordinates, size (length, width, height), and yaw orientation.
Given a coordinate c = (cx, cy, cy), we denote c ∈ dt if c is
within any of the bounding boxes {bt1, ..., btN}. Then, for
each cube ci in ROI, we could calculate its probability to be
occupied as:

P (ci) =

∑T
j=1 I(ci ∈ dj)

T
(1)

where I(·) is an indicator function. The POG could then
be formally defined as {P (c1), P (c2), ..., P (cM)}, a col-
lection of occupancy probabilities of each cube in the ROI,
where M is the total number of cubes in ROI. One such
example of a POG is shown in Figure 4.

For a particular LiDAR configuration C, we employ
ray tracing by Bresenham’s Line Algorithm [7] to find all
the cubes which intersect with the perception areas of that
LiDAR. We denote the set of these perception cubes as
SC = {s1, s2, ..., sn}, where n is the set size. We could
consider this collection of cubes to be discretized trajecto-
ries of all LiDAR beams and to represent the perception
range of this LiDAR configuration C.

Given the set of perception cubes SC , the probability
of each cube signifies presence of objects inside it. Since
presence of an object in one cube does not imply presence
in other cubes, we could treat these probabilities indepen-
dently and calculate the joint distribution over all cubes in
the set SC as:

P (SC) = P (s1, s2, ..., sn) =

n∏
k=1

P (sk) (2)

Considering the probabilistic nature of the problem, in-
formation about presence of objects in a cube could be
quantified using Shannon Entropy of the probability distri-
bution defined over the cube.

H(si) = −p log(p) − (1−p) log(1−p) ; p = P (si) (3)

The uncertainty information of a particular LiDAR con-
figuration C could then be quantified as:

H(SC) = H(s1, s2, ..., sn) =

n∑
i=1

H(si) (4)

POG generation

User-specific parameters

ROI size, LiDAR number etc.

Optimization Data collection
with annotation

Detection model
training & evaluation

POG Point cloud
dataset

Optimized
LiDAR

placement
Performance
(mAP, mAOS)

Point cloud with
Bbox annotation

POG

CARLA
simulator

LiDAR
configuration

Surrogate cost
calculation

Black-box
TuRBO

optimization

CARLA
simulator

Training

3D Bbox
dataset

Point cloud

3D Bbox
labels

Loss

3D object
detection model

Prediction

Figure 5: Evaluation framework overview.

Finally, we define the surrogate cost of a LiDAR place-
ment C to be cost(C) = −H(SC) and we aim to minimize
this cost. This is equivalent to maximizing the amount of
information about presence of objects in the cubes of set
SC covered by the LiDAR configuration C.

3.3. Optimization

A single LiDAR configuration could be expressed as
[xi, yi, zi, αi, βi, γi], where (xi, yi, zi) is the location and
(αi, βi, γi) are roll, pitch and yaw angles of the LiDAR in
the ROI coordinate system. The yaw angle (represented by
γi) is not optimized as the LiDAR beams rotate 360 de-
grees in the horizontal FOV. Therefore, our goal is to find a
configuration [xi, yi, zi, αi, βi] which minimizes the uncer-
tainty mentioned in Equation 4.

Since the surrogate cost metric is not differentiable, we
could use any black-box optimization method to find the
optimal LiDAR configuration. A proposed configuration
C is considered to be valid if it satisfies some geomet-
ric constraints, because the LiDARs could not be installed
far away from the vehicle. These geometric constraints
are also the boundary points of the search region. De-
note Cmin = [xmin, ymin, zmin, αmin, βmin], Cmax =
[xmax, ymax, zmax, αmax, βmax]. Then, the optimization
objective becomes:

C∗ = argmin
C
−H(SC)

such that Cmin ≤ C ≤ Cmax

(5)

The overall pipeline of our LiDAR configuration opti-
mization and evaluation method is shown in Figure 5. We
utilize TuRBO [16] as the optimizer to minimize the surro-
gate. TuRBO works by creating multiple local probabilistic
models instead of a single global exploration model. Sim-
ilar to stochastic optimization methods, it creates trust re-
gions (the center of which is usually the best solution) us-
ing simple surrogate models that are believed to accurately

model the function to be optimized. TuRBO proposes con-
figurations which are then evaluated using our ray tracing
based fast evaluation methodology on top of a POG.

4. Experiments
In this section, we aim to address two questions: 1)

Does LiDAR placement influence the final perception per-
formance? 2) Could our LiDAR placement optimization
method improve the perception performance? To answer
these questions we conduct extensive experiments in a real-
istic self-driving simulator — CARLA [12]. We choose to
evaluate our method in simulation environment rather than
on public datasets or in real world for several reasons. First
of all, public point cloud datasets are collected from specific
hardware setups, which could not generate various LiDAR
placement configurations as required. Secondly, we need to
fix all environment variables, such as the ego-vehicle tra-
jectory and surrounding objects, and only change the Li-
DAR configurations to fairly compare the perception per-
formances of these configurations. However, it is very hard
to control these environment variables for different LiDAR
configurations in the real world because vehicles and pedes-
trians on the road are continuously changing. Therefore, the
most convenient and economical way to achieve this is to
simulate scenarios and point clouds in realistic simulators
such as CARLA.

In the subsequent subsections we detail the experimental
setup in CARLA and show how it connects to the overall
pipeline of our methodology, as shown in Figure 5.

4.1. Data collection and model training

CARLA simulator. We use CARLA as the simulation
platform to collect data and evaluate our method. CARLA
is a high-definition open-source simulator for autonomous
driving research that offers flexible scenario setups and sen-
sor configurations. CARLA provides realistic rendering
and physics simulation based on the Unreal Engine 4, and

(a) (b)
Figure 6: Sample maps in the CARLA simulator used for
data collection. (a) An infinite map loop with a highway and
a small town. (b) A small town with basic road junctions.

has a growing community to support it and develop new
features. Furthermore, the LiDAR sensor could generate
precise point cloud data and could be easily configured
with customized placement and beam parameters. Hence,
CARLA has been used for a wide range of AV research,
including development, training, testing and validating au-
tonomous driving systems [9, 10].

ScenarioRunner. The CARLA community contributes
many urban maps and scenarios. For example, Figure 6
shows a sample of the maps provided in the simulator,
which encompass various conditions of traffic and road ge-
ometries. To fairly compare perception capabilities of dif-
ferent LiDAR configurations we use CARLA’s inbuilt Sce-
narioRunner module to simulate traffic scenarios such that
all environmental variables, except for the LiDARs, are the
same. A scenario is usually composed of 3D models of
static and dynamic objects, where the former could be re-
garded as the overall map including roads and buildings,
and the latter as pedestrians and vehicles. The perception
algorithm that is evaluated in this paper aims to detect dy-
namic objects and predict their 3D bounding boxes. The
ego-vehicle with LiDAR sensors and other dynamic objects
keep the same moving trajectories in these scenarios. This
ensures that the ground-truth 3D bounding boxes for all dy-
namic objects around the ego-vehicle within the ROI are
the same for different LiDAR configurations. We collect
data from 87 such scenarios with fixed 10 hz sampling fre-
quency, and the overall dataset size is 35000 frames, which
contains point clouds and 3D bounding box labels for dy-
namic objects. The point clouds from different LiDARs
are transformed to the ego-vehicle’s frame of reference for
computational convenience.

Data format. The data collection procedure is tied as
close as possible to the KITTI dataset [17]. Using Scenari-
oRunner ensures strong reproducibility of experiments. To
track the visibility of objects, a depth camera is utilized. 3-
D Bounding boxes are projected back to the camera image
using intrinsic and extrinsic matrices for tracking the height
and truncation of the object in the bird’s eye view. Using
occlusion statistics, height and truncation, objects are clas-
sified as easy or hard similar to the KITTI dataset.

3D object detection model. We use PointVoxel-RCNN

(PV-RCNN) [30] as the 3D object detection module to eval-
uate the perception performance of different LiDAR place-
ments. PointVoxel-RCNN combines voxel-based features
using anchors of various different sizes and and pointnet-
based features using a Voxel Set Abstraction Layer. Fol-
lowing this layer, using multiple receptive fields, the learned
discriminative features of keypoints are then aggregated to
the ROI-grid points for finer grained region proposals. The
training hyper-parameters, such as the number of iterations,
learning rate, and batch size, are kept the same for all exper-
iments for fair comparison. See the supplementary material
for details.

Baselines. We adopt several baseline LiDAR place-
ments to show the effectiveness of our proposed optimiza-
tion method. We consider the 4 LiDAR placement problem
where each LiDAR has 16 beams. Although the beam an-
gles could be optimized (see Section 5.4 for details), for
our experiments we consider beams to be equally spaced in
the vertical FOV [−25.0, 5.0]. The first baseline configu-
ration is inspired by Apple’s self-driving cars (Figure 1a),
which places the 4 LiDARs on each of the 4 roof corners.
We name this placement as “Square”. The second baseline
configuration is achieved by stacking four LiDARs together
on the center of the roof, which is inspired by Ford’s au-
tonomous vehicle (Figure 1c) and we name it as “Center”.
The third baseline is motivated by Cruise (Figure 1b). The
4 LiDARs are placed in a line, where the 2 LiDARs on both
sides are tilted at a certain angle. We name it as “Line”.
The visualization of baseline placements are shown in the
first column of Figure 7, where each LiDAR’s pose is with
respect to ego-vehicle’s coordinate system having origin at
the vehicle’s geometric center. The detailed coordinates of
each LiDAR placement are presented in the supplement.

Evaluation metrics. We show results on three com-
monly used metrics — Bird-eye view (BEV) detection, 3-
D Intersection Over Union (IOU) and Average Orientation
Similarity (AOS) — to evaluate the final perception perfor-
mance of different LiDAR configurations. 3-D IOU mea-
sures the fraction of overlap region divided by total region
occupied by the 3-D bounding boxes together. Orientation
Similarity considers prediction of the orientation together
with object detection. These metrics are reported by av-
eraging precision across 40 recall points so as to roughly
approximate the precision recall curve. The evaluation IoU
thresholds are set as 0.7 and 0.5 for easy and hard respec-
tively. The detail of the metrics is described in [17]. As a
particular instance of this paper, we only evaluate the detec-
tion performance for the ‘Cars’ label.

Note that all the environmental variables (scenarios and
model training parameters) except the LiDAR configura-
tions are always the same during the perception perfor-
mance evaluation procedure, so the three metrics could re-
flect the point cloud quality or the perception capability for

Configuration
Car - BEV Car - 3D Detection Car - AOS

AP R40 @0.70 @0.50 AP R40 @0.70 @0.50 AP R40 @0.70 @0.50
Overall Easy Hard Overall Easy Hard Overall Easy Hard

Square 50.54 60.11 40.97 46.81 55.48 38.14 35.6 39.57 31.76
Center 49.01 56.33 41.69 43.94 50.75 37.12 49.83 53.14 46.51
Line 45.18 51.68 38.68 42.79 49.25 36.32 31.02 33.98 28.07

Optimized (Ours) 55.47 60.78 50.16 50.53 56.82 44.25 53.48 58.96 47.99

Table 1: Comparison of object detection performance of various LiDAR configurations. For all 3 metrics, mean average
precision is computed by averaging precision across 40 recall positions (AP R40). Overall column is the arithmetic mean of
Easy and Hard columns. More details about their definitions could be found in the KITTI dataset [17]. The IOU thresholds
in the evaluation are set as 0.7 and 0.5 for easy and hard respectively.

different LiDAR placements.

(a) Square (b) Pointcloud (Square)

(c) Center (d) Pointcloud (Center)

(e) Line (f) Pointcloud (Line)

(g) Optimized (h) Pointcloud (Optimized)

Figure 7: Standard baseline and optimal LiDAR configu-
rations along with their generated point clouds, used for
Experiment 1. The left column above shows the configu-
rations while the right column displays the corresponding
point clouds in the same scene.

4.2. Results

The results are presented in Table 1, which clearly show
that different LiDAR configurations will affect the percep-
tion performance because all other variables (number and
type of LiDAR, environment, object trajectories, model
training parameters, etc) are the same except the LiDAR
placement. It is seen that the ‘Square’ configuration, which
is inspired by Apple’s AV, outperforms other standards
baselines in consideration.

Furthermore, across the various baseline configurations
and evaluation metrics, we find that models trained with op-
timal placement data outperform models trained on base-
line configurations. We could see a large performance im-
provement with the optimized placement when compared
with baselines (10% ∼ 20%), which implies that our Li-
DAR placement optimization method could provide better
point cloud quality and thus improve the perception perfor-
mance. Figure 8 shows the relation of our surrogate cost
value with one of the perception evaluation metric IOU. We
could see that the proposed information-theoretic cost is in-
versely correlated with the evaluation metric, which means
that minimizing the surrogate cost could improve the per-
ception capability. The second column in Figure 7 shows
the point clouds of a certain scenario with different LiDAR
configurations. We can see that the optimal placement leads
to denser points on the car.

5. Applications
In this section we detail some of the applications and ex-

tensions of our methodology. We believe that the following
subsections have direct relevance for AV researchers and
manufacturers. We provide more experiments for some ap-
plications in the supplementary material.

5.1. Accelerated LiDAR placement evaluation

Since our surrogate cost is inversely correlated with the
perception performance, we could accelerate the evaluation
procedure of a particular LiDAR configuration in a city. In

1800 1600 1400 1200 1000 800 600 400
Surrogate Cost Function

10

20

30

40

50

O
ve

ra
ll

3-
D

 D
et

ec
tio

n
m

A
P

(%
)

IOU

Figure 8: Relation of overall mAP values of IOU (in %) and
the surrogate cost function.

other words, using our surrogate cost, one does not need
to follow the time-consuming procedure to get an evalua-
tion of a LiDAR placement: LiDAR installation→ massive
data collection → perception model training → evaluation
of perception performance. Instead, one only needs a 3D
bounding box dataset of object of interests to generate the
POG and evaluate the LiDAR placement, which is fast and
economical, and could also be customized by different de-
ployment scenarios.

5.2. LiDAR placement optimization

Since we could evaluate a LiDAR placement fast using
our surrogate cost function in Equation 4, it is now easy
to optimize a LiDAR setup given the number of LiDARs
(and their beams) in the setup. From Table 1, we could also
see a great performance improvement by our optimized Li-
DAR placement. This has direct relevance to the AV re-
search community and industry since the current LiDAR
placement is more or less intuition driven. Out approach
could maximize the efficacy of the LiDAR sensor usage.

5.3. LiDAR number selection

With the proposed framework, we could easily evaluate
the perception performance as the number of LiDARs in-
crease and choose the desired one. For instance, given a
type of LiDAR, we could find the optimized placement for
n LiDARs, where n = {1, 2, 3, ...}, and compute the surro-
gate cost easily based on a POG. Then we plot the surrogate
cost value versus the number of LiDARs and pick the elbow
point number as the optimal choice, because after this point
there would be marginal performance improvement by in-
creasing the LiDAR number. Therefore, our method could
help the AV manufactures choose the right balance between
the sensor cost and perception capability and avoid unnec-
essary expenditure.

5.4. LiDAR beam angle optimization

Since the beam angles of a LiDAR are also tunable, a
logical follow-up question which arises following subsec-
tion 5.2 is finding the beam angle which maximizes object

detection. Specifically, we could regard a multi-beam Li-
DAR as a collection of multiple single beam LiDARs at the
same position, then use our method to solve optimal beam
angle design for the LiDARs such that the information gain
is maximized. Hence, our method could also help the Li-
DAR manufactures design their sensor specifications based
on different AV deployment scenarios.

5.5. Active LiDAR perception

AVs with LiDAR sensors have to process a large amount
of point cloud data online, which brings a lot of computa-
tional burden and is not energy efficient. Therefore, some
active depth sensors have been proposed to sense the envi-
ronment dynamically, such as the light curtain sensor de-
veloped by Bartels et al. [6]. The proposed surrogate cost
in this paper could serve as a guidance for those active sen-
sors to focus on important areas around the AV based on
different scenarios.

6. Conclusion
This paper investigates the interplay between LiDAR

placement and perception performance. We proposed a
novel solution to the problem of optimal LiDAR placement
and configuration for AVs. Our motivation stemmed from
building a unified framework of optimal LiDAR perception
and configuration, which will help balance perception ca-
pabilities and design costs of LiDARs, without sacrificing
safety in AVs. We proposed a data-driven surrogate cost
function which characterized the total uncertainty of infor-
mation present in the conical perception areas. This helped
us accelerate LiDAR placement optimization procedure that
aims to maximize LiDAR perception performance. Finally,
we conducted extensive experiments in an AV simulator,
CARLA, to validate the correlation between LiDAR per-
ception and configuration. We employed the state-of-the-
art 3D object detection module to evaluate and compare
different LiDAR configurations. The experimental results
indicated that the optimal LiDAR placement solved by our
method outperforms those of standard baseline configura-
tions.

Research in this paper sets the precedent for future work
which will consider occlusion between the LiDARs and the
ego vehicle. With increasing relevance of adversarial learn-
ing, we also aim to investigate if we could mitigate the ef-
fect of sensor attacks on the AV perception by changing the
LiDAR placement.

References
[1] Apple autonomous vehicle.

https://www.teslarati.com/
apple-car-larger-fleet-new-hires. Ac-
cessed: 2021-03-10.

[2] Cruise autonomous vehicle. https:
//www.wired.com/story/
gm-cruise-generation-3-self-driving-car.
Accessed: 2021-03-10.

[3] Ford autonomous vehicle. https://www.
theverge.com/2018/8/16/17693866/
ford-self-driving-car-safety-report-dot.
Accessed: 2021-03-10.

[4] University of michigan autonomous vehicle. http://
robots.engin.umich.edu/Projects/NGV. Ac-
cessed: 2021-03-10.

[5] A. Agnihotri, P. Saraf, and K. R. Bapnad. A convolutional
neural network approach towards self-driving cars. In 2019
IEEE 16th India Council International Conference (INDI-
CON), pages 1–4, 2019.

[6] Joseph R Bartels, Jian Wang, William Whittaker, Srinivasa G
Narasimhan, et al. Agile depth sensing using triangulation
light curtains. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7900–7908, 2019.

[7] J. E. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30, 1965.

[8] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou,
Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and
Z Morley Mao. Adversarial sensor attack on lidar-based per-
ception in autonomous driving. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications
security, pages 2267–2281, 2019.

[9] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In Conference on Robot
Learning, pages 66–75. PMLR, 2020.

[10] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Model-
free deep reinforcement learning for urban autonomous driv-
ing. In 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), pages 2765–2771. IEEE, 2019.

[11] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017.

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017.

[13] Hongyuan Du, Linjun Li, Bo Liu, and Nuno Vasconcelos.
Spot: Selective point cloud voting for better proposal in point
cloud object detection. In European Conference on Com-
puter Vision, pages 230–247. Springer, 2020.

[14] Hugh F Durrant-Whyte. Consistent integration and propa-
gation of disparate sensor observations. The International
journal of robotics research, 6(3):3–24, 1987.

[15] Joacim Dybedal and Geir Hovland. Optimal placement of 3d
sensors considering range and field of view. In 2017 IEEE In-

ternational Conference on Advanced Intelligent Mechatron-
ics (AIM), pages 1588–1593. IEEE, 2017.

[16] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D
Turner, and Matthias Poloczek. Scalable global optimiza-
tion via local Bayesian optimization. In Advances in Neural
Information Processing Systems, pages 5496–5507, 2019.

[17] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[18] Rohit Ravindranath Kini. Sensor position optimization for
multiple lidars in autonomous vehicles, 2020.

[19] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven L Waslander. Joint 3d proposal generation and
object detection from view aggregation. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 1–8. IEEE, 2018.

[20] Bo Li. 3d fully convolutional network for vehicle detection
in point cloud. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1513–1518.
IEEE, 2017.

[21] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-
sun. Multi-task multi-sensor fusion for 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7345–7353, 2019.

[22] Daniel Liu, Ronald Yu, and Hao Su. Extending adversarial
attacks and defenses to deep 3d point cloud classifiers. In
2019 IEEE International Conference on Image Processing
(ICIP), pages 2279–2283. IEEE, 2019.

[23] Zuxin Liu, Mansur Arief, and Ding Zhao. Where should we
place lidars on the autonomous vehicle?-an optimal design
approach. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2793–2799. IEEE, 2019.

[24] Will Maddern, Alex Stewart, Colin McManus, Ben Upcroft,
Winston Churchill, and Paul Newman. Illumination invari-
ant imaging: Applications in robust vision-based localisa-
tion, mapping and classification for autonomous vehicles. In
Proceedings of the Visual Place Recognition in Changing
Environments Workshop, IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong, China, vol-
ume 2, page 3, 2014.

[25] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[26] Shenyu Mou, Yan Chang, Wenshuo Wang, and Ding Zhao.
An optimal lidar configuration approach for self-driving cars.
arXiv preprint arXiv:1805.07843, 2018.

[27] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 918–927, 2018.

[28] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

https://www.teslarati.com/apple-car-larger-fleet-new-hires
https://www.teslarati.com/apple-car-larger-fleet-new-hires
https://www.wired.com/story/gm-cruise-generation-3-self-driving-car
https://www.wired.com/story/gm-cruise-generation-3-self-driving-car
https://www.wired.com/story/gm-cruise-generation-3-self-driving-car
https://www.theverge.com/2018/8/16/17693866/ford-self-driving-car-safety-report-dot
https://www.theverge.com/2018/8/16/17693866/ford-self-driving-car-safety-report-dot
https://www.theverge.com/2018/8/16/17693866/ford-self-driving-car-safety-report-dot
http://robots.engin.umich.edu/Projects/NGV
http://robots.engin.umich.edu/Projects/NGV

[29] Pooya Rahimian and Joseph K Kearney. Optimal camera
placement for motion capture systems. IEEE transactions
on visualization and computer graphics, 23(3):1209–1221,
2016.

[30] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10529–10538, 2020.

[31] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 770–779, 2019.

[32] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detection
from point cloud with part-aware and part-aggregation net-
work. IEEE transactions on pattern analysis and machine
intelligence, 2020.

[33] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2530–2539, 2018.

[34] Dominic Zeng Wang and Ingmar Posner. Voting for voting
in online point cloud object detection. In Robotics: Science
and Systems, volume 1, pages 10–15607. Rome, Italy, 2015.

[35] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

[36] Hong Zhang. Two-dimensional optimal sensor placement.
IEEE Transactions on Systems, Man, and Cybernetics,
25(5):781–792, 1995.

[37] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and map-
ping in real-time. In Robotics: Science and Systems, vol-
ume 2, 2014.

A. Appendix

A.1. Hyper-parameters

We use PV-RCNN as the primary 3D object detection
model for our test bench. Details of the training hyper-
parameters are given in Table 2. We ensure that the hyper-
parameters are same for all experiments to fairly compare
the point cloud quality.

Hyperparameter Value
Epochs 30

Optimizer Adam
Learning Rate 0.01
Weight Decay: 0.01

Momentum: 0.9
Learning Rate Clip 0.0000001

Learning Rate Decay 0.1
Div Factor 10

Warmup Epochs 1
Learning Rate Warmup False

Gradient Norm Clip 10
MOMS [0.95, 0.85]

PCT START 0.4
Decay Step List [35, 45]

Table 2: Hypeparameters for PV-RCNN

A.2. Coordinates of LiDAR Configurations

Following the notation given in Section 3.3, the ego-
vehicle has its coordinate frame at its geometric center at
[30, 10, 0, 0, 0] with respect to the ROI frame of reference.
All LiDAR configurations, which are mentioned in Section
4.1 are shown in Figure 7, and their detailed coordinates are
given in Table 3. These coordinates are with respect to the
ego-vehicle’s coordinate frame, as illustrated in Figure 9.

A.3. Sample Evaluation of LiDAR Configurations

This section provides an example to demonstrate accel-
erated LiDAR placement evaluation, which is described in
Section 5.1. Since the proposed POG-based metric is cor-
related with perception performance, we can easily com-
pare two LiDAR configurations by their surrogate costs.
Note that the two LiDAR configurations could have differ-
ent number of LiDARs and even different types of LiDARs.

For instance, consider an AV company which has two
LiDAR configuration candidates A and B with the same
price, where A is 4 10-beam LiDARs and B is 1 40-beam
LiDAR. Since their number of beams is equal, it is hard
to tell which one will perform better given the company’s
point cloud perception algorithm.

Z

X
Y

60 m

4 m

20 m

ROI CF

Z

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

LiDAR CF

AV CF

Figure 9: Coordinate frames (CF) of reference of ROI (ori-
gin at one of its corners), the ego-vehicle (origin at its geo-
metric center) and a LiDAR. Figure not to scale.

One traditional way to evaluate the two candidates is
to install those LiDARs on the vehicle, collect and anno-
tate point cloud data, train the perception model, and fi-
nally obtain the perception performance. However, there
are two major drawbacks for this approach: 1) Since we
have showed that the sensor placement will influence the
perception performance, how to install those LiDARs on the
vehicle to fairly compare them? 2) The whole procedure re-
quires a lot of time and labor, which introduces additional
deployment costs.

In contrast, with our approach, we can easily optimize
the placements for both A and B and compare their opti-
mal surrogate costs. In this way, the evaluation procedure
could be done in several hours. For example, we still con-
sider the CARLA simulation environment and we have the
same POG as we used in Section 4. Then we optimize the
placements for A and B and get the optimal surrogate costs
cost(A) = −1383.685, cost(B) = −756.337. Then, we
know that A (4 10-beam LiDARs) is better then B (1 40-
beam LiDAR) because cost(A) < cost(B) with optimal
placement, which signifies that A could gain more informa-
tion than B.

A.4. How many LiDARs are enough?

This section provides an example for the LiDAR number
selection application as described in Section 5.3. We are in-
terested in this application for two main reasons: 1) To re-
duce deployment cost and real-time computational burden
of point cloud data processing, which might be unnecessary
in many cases. 2) To install sufficient number of LiDARs
for safe and adequate perception of the environment for AV
safety. Therefore, selecting the right number of LiDARs
on AV to balance the cost and perception capability is ex-
tremely important.

x y z roll pitch

Square

- 0.500
- 0.500
0.500
0.500

0.500
- 0.500
0.500

- 0.500

2.200
2.200
2.200
2.200

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

Center

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

2.600
2.600
3.000
3.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

Line

- 0.250
0.250
0.000
0.000

0.000
0.000

- 0.250
0.250

2.600
2.600
2.600
2.600

0.000
0.000
0.550
2.700

0.000
0.000
0.000
0.000

Optimized

- 0.068
- 0.412
- 1.783
- 1.867

0.929
- 0.277
0.560

- 0.534

2.866
2.432
2.903
2.926

2.652
0.404
0.491
0.411

2.768
2.886
3.131
2.850

Table 3: Coordinates of LiDAR sensors with respect to the ego-vehicle coordinate frame. The LiDAR coordinates are
transformed from world (ROI) frame to the ego-vehicle frame of reference for computational convenience and intuitive
understanding of their placement. All values are in meters.

2 4 6 8 10 12
Number of LiDARs

3500
3000
2500
2000
1500
1000
500

Su
rr

og
at

e
C

os
t F

un
ct

io
n

Surrogate Cost Function

Figure 10: Relation of the surrogate cost function with the
number of LiDARs.

As a particular example, suppose we have n 10-beam
LiDARs for an AV and we want to determine the num-
ber n. Then we can compute the optimized placements
for i LiDARs and obtain their corresponding surrogate cost
cost(i), where i ∈ {1, 2, ...}. Figure 10 shows the surro-
gate cost values versus the LiDAR number. We can see an
elbow point at around n = 7, which means adding more Li-
DARs than 7 will not improve the perception performance
a lot. Therefore, installing 7 10-beam LiDARs on an AV
would be a good balance between the perception capability
and deployment cost.

