
Scaling Generative Pre-training for User Ad Activity Sequences
Sharad Chitlangia

Amazon Ads
chitshar@amazon.com

Krishna Reddy Kesari
Amazon Ads

kkesari@amazon.com

Rajat Agarwal
Amazon Ads

agrajat@amazon.com

ABSTRACT
User activity sequence modeling has significantly improved perfor-
mance across a range tasks in advertising spanning across super-
vised learning tasks like ad response prediction to unsupervised
tasks like robot and ad fraud detection. Self-supervised learning
using autoregressive generative models has garnered interest due
to performance improvements on time series and natural language
data. In this paper, we present a scalable autoregressive generative
pre-training framework to model user ad activity sequences and
inspect its scaling properties with respect to model size, dataset size
and compute. We show that test loss on pre-training task follows
power law scaling with respect to model size, with larger models
being more data and compute efficient than smaller models. We
also demonstrate that improvement in pre-training test loss trans-
lates into better downstream task performance by benchmarking
the models on conversion prediction and robot detection tasks in
advertising.

KEYWORDS
generative pre-training, self-supervised learning, scaling, invalid
traffic, robot detection, digital advertising

ACM Reference Format:
Sharad Chitlangia, Krishna Reddy Kesari, and Rajat Agarwal. . Scaling
Generative Pre-training for User Ad Activity Sequences. In AdKDD 2023.
ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
Advances in deep learning have driven a rapid adoption of sequence
models applied to user behavioral data for advertising use cases
spanning across personalization, ad response prediction, bidding
and robot and fraud detection. Deep sequence models reduce re-
liance on manual feature engineering while utilizing fine grained
event level information about the users’ activity, leading to im-
proved performance across a wide range of tasks. For tasks like ad
response prediction, where labeled data is available at scale, typical
approaches use supervised learning to train deep sequence models
[1]. However, in domains like ad fraud detection, obtaining accurate
labels at scale is implausible and error prone due to unavailability
of high coverage ground truth, and attempts to create pseudo labels
are fraught with risks of introducing bias. In such scenarios, learn-
ing self-supervised user representations is a natural choice. Recent
advances have shown that self-supervised pre-training of sequence
models not only improves performance on tasks with low-labeled
data volumes but also enhances performance over traditional su-
pervised learning on large labeled datasets.

AdKDD ’23, August 7, 2023, Long Beach, CA

Generative models, which aim to model the input data distribu-
tion 𝑃 (𝑥), have been at the forefront in demonstrating the effective-
ness of self-supervised learning. The key idea in self-supervised
learning is to construct a proxy task on unlabeled data available
at scale, training on which enables the model to learn robust task-
agnostic embeddings capturing important characteristics and fea-
tures about the dataset. Autoregressive models, a class of generative
models that perform maximum likelihood estimation by defining
an ordering over the input, are a natural fit for language and time
series data and have yielded state-of-art results by training highly
parallelizable deep sequence model architectures like Transformers
[2] on the next-token prediction objective. This has motivated ex-
ploration of learning user embeddings using next event prediction
on their ad activity sequences as the self-supervised pre-training
objective [3, 4].

An interesting property of generative pre-training of Transform-
ers is their enhanced performance with growing model size, data
size and compute. Analysis of these scaling properties has garnered
interest in the research community, with primary focus so far being
on natural language and computer vision data [5, 6]. In this work,
we investigate the scaling properties for autoregressive pre-training
of user activity sequence models in advertising. Rather than gener-
alizing scaling laws in natural language processing to advertising,
we believe user activity sequence models merit an independent
scaling analysis, since they are different from text based models in
three significant ways. First, instead of a homogeneous time-series
of text tokens, user activity sequence is a multi-dimensional time
series where each event in the sequence can be described using a va-
riety of features types typically seen in advertising, spanning across
discrete, high cardinality, real valued and natural language types.
Second, data size in advertising is upper bounded by the number
of users interacting with the ad program. This is in contrast with
scaling of text-based models where while increasing model size,
dataset size is considered to be unbounded as one could crawl more
webpages to get additional data. Finally, since traffic patterns and
user behavior in advertising are continuously evolving, advertising
models need to be retrained continuously, making training cost and
time a critical factor in deciding the scaling strategy for deployed
settings.

The paper is structured as follows: Section 2 describes the related
work, we outline a scalable autoregressive generative pretraining
framework for user activity sequences in Section 3. In Section 4,
we analyze different scaling properties of the model with respect
to model size, dataset size and compute. We present how improve-
ment in test loss during pre-training translates to downstream
performance on a supervised task of conversion prediction and an
unsupervised task of bot detection in advertising in Section 5. We
discuss the key learnings and contrast them with scaling properties
in other data domains in Section 6 and conclude in Section 7.

AdKDD ’23, August 7, 2023, Long Beach, CA Sharad Chitlangia, Krishna Reddy Kesari, and Rajat Agarwal

2 RELATEDWORK
Generative models aim to learn the input data distribution 𝑃 (𝑥),
and help either estimate the probability of a given data point or
sample a data point from the input distribution. In this paper, we are
primarily concerned with autoregressive deep generative models.
The autoregressive formulation factorizes learning the distribution
𝑃 (𝑥) as the product of conditional probabilities of current value
given all previous values in a pre-defined ordering. This framework
has been applied successfully across various domain such as image
synthesis [7], audio synthesis [10] and text [8]. Previous work has
also applied similar autoregressive frameworks to self-supervised
modeling of user activity sequences [3, 4], with benefits across
various downstream tasks.

Power law based scaling properties for generative pre-training
on text datasets using Transformer models was studied in [5]. These
properties have been successfully used to create large language
models such as [8]. Works to establish scaling properties for other
data domains such as vision followed in quick succession [6, 11,
12]. More recently, there has been a line of work suggesting that
these properties might be less universal than earlier suggested
[11]. In addition, methods have been proposed to make the scaling
exponential for certain tasks, by either pruning the data effectively
[14] or pre-training with a different objective [13].

Self-supervised learning has emerged as an important technique
in domains of fraud detection [4], recommender systems [15] and
advertising [16]. Particularly, in detection of fraud [4, 17] where we
typically observe a lack of precise labels, pre-training representa-
tions help avoid label bias. [18] studied scaling behavior of DLRM
[19] style recommender system models across parameters, com-
pute and data to show that unlike text data, model scaling does not
contribute as much to performance improvements in recommender
systems. Previous works on scaling properties in advertising use
CLIP [20] based models and assume data access across multiple
service domains [21]. To the best of our knowledge, our work is the
first to study scaling behavior of Transformers built on user activity
sequences alone that uses vanilla autoregressive pre-training and
also includes an evaluation of large models on downstream tasks
relevant in advertising and fraud detection.

3 MODELING FRAMEWORK
3.1 Constructing Input Sequences
We order ad events (clicks) from the user based on timestamps to
construct the activity sequence. Each event in the sequence is de-
scribed using multiple features, creating a multi-dimensional time
series of the user’s ad activity. To handle multiple feature types
describing the ad event, we encode each feature using an embed-
ding function which is learnt in an end-to-end manner with the
model training objective. Real-valued are converted to categorical
using bucketing to tackle the large range. Formally, let 𝑆 be the
n-length sequence of events for a user entity ordered in time, where
𝑋𝑖 indicates the event in position 𝑖 in 𝑆 . Let [𝐹1, 𝐹2,..,𝐹𝑘] be the
feature set used for the event description and let [𝐸1, 𝐸2,..,𝐸𝑘] be
the embedding functions for the corresponding features.

𝑆 = [𝑋1, 𝑋2,, 𝑋𝑖 , ..., 𝑋𝑛] (1)
𝑋𝑖 = [𝐹1 (𝑖); 𝐹2 (𝑖); ...; 𝐹𝑘 (𝑖)] (2)

The descriptor for each ad event is a concatenation of the associ-
ated feature embeddings. 𝐶𝑖 represents the concatenation of these
embeddings for the event at position 𝑖 .

𝐶𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐸1 (𝐹1 (𝑖)), 𝐸2 (𝐹2 (𝑖)), ..., 𝐸𝑘 (𝐹𝑘 (𝑖)))

3.2 Training Objective
The time series of events S represented by their concatenated feature
representations C is provided as input to an off-shelf autoregressive
deep sequence model. The output representation at the last time
step is taken as the output representation of the sequence.

𝑅 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑀𝑜𝑑𝑒𝑙 (𝐶) (4)

where R is the output representation (embedding) obtained at the
final time step of the model.

The model parameters along with the embedding matrices are
trained using next event prediction as the self-supervised objective.
At each time step, the model predicts the probability of the next
event given only the history, making autoregressive property a
necessary condition for the choice of the deep sequence model. We
use the Transformer decoder block as the autoregressive model.
The goal is to maximize the following likelihood,

𝐿(𝑆) =
∑︁
𝑢

∑︁
𝑖

log 𝑝 (𝑋𝑖+1 |𝑋1, .., 𝑋𝑖 ;𝜃) (5)

where for each user entity 𝑢, 𝑝 (𝑋𝑖+1 |𝑋1, .., 𝑋𝑖) is the output proba-
bility of the next event at each time step and 𝜃 corresponds to the
model and embedding matrix parameters. Assuming each feature
of predicted event to be independent given the history,

𝑝 (𝑋𝑖+1 |𝑋1, .., 𝑋𝑖) =
𝑘∏
𝑗=1

𝑝 (𝐹 𝑗 (𝑖 + 1) |𝑋1, .., 𝑋𝑖) (6)

For the probability terms corresponding to low cardinality and
bucketed real valued feature inputs, full softmax can be computed
without any computational bottleneck and cross-entropy of the
predicted distribution with the next event feature is used in the loss
function.

𝐽
𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐹 𝑗 (𝑖) = 𝐻 (𝐹 𝑗 (𝑖 + 1), 𝐹 𝑗 (𝑖)) (7)

where 𝐻 (𝑃,𝑄) is the cross entropy between probability distribu-
tions 𝑃 and 𝑄 , 𝐹 𝑗 (𝑖 + 1) is the ground truth probability distribution
for the 𝑗𝑡ℎ feature of the next event and 𝐹 𝑗 (𝑖) is its predicted output
probability distribution from the softmax function at time step 𝑖 . To
avoid the computational bottleneck in case of high cardinality and
natural language features, contrastive predictive coding [22] is used,
which classifies the ground truth feature value of the next time step
against a set of randomly chosen negative examples directly in the
embedding space. The dot product between the predicted embed-
ding and the target embedding (ground truth or negative samples)
represents the logits, using which the cross entropy is computed.

𝐽
𝐶𝑃𝐶𝐹 𝑗 (𝑖) = − log 𝑝 (𝐸 𝑗 (𝐹 𝑗 (𝑖 + 1)) |𝑃𝑖, 𝑗 , {𝑙})

= − log
𝑒 (𝐸 𝑗 (𝐹 𝑗 (𝑖+1)))𝑇 𝑃𝑖,𝑗

𝑒 (𝐸 𝑗 (𝐹 𝑗 (𝑖+1)))𝑇 𝑃𝑖,𝑗 +∑
𝑙 𝑒

(𝐸 𝑗 (𝐹 𝑗 (𝑙)))𝑇 𝑃𝑖,𝑗
(8)

Scaling Generative Pre-training for User Ad Activity Sequences AdKDD ’23, August 7, 2023, Long Beach, CA

where 𝑃𝑖, 𝑗 is the prediction for the next time step embedding for
the high cardinality / natural language feature 𝐹 𝑗 and {𝑙} are the
set of events that form the negative samples.

The final loss function now consists of two parts - exact cross
entropy loss for low cardinality features and contrastive loss for
high cardinality and natural language features. Let 𝑐 𝑗 be an indicator
variable that takes the value 1 if feature 𝐹 𝑗 is a high cardinality /
natural language feature and 0 otherwise. The self-supervised loss
function hence becomes:

𝐽𝑠𝑒𝑙 𝑓 −𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =
1

𝑛 − 1

𝑛−1∑︁
𝑖

𝑘∑︁
𝑗=1

((1 − 𝑐 𝑗) 𝐽𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐹 𝑗 (𝑖)

+ (𝑐 𝑗) 𝐽𝐶𝑃𝐶𝐹 𝑗 (𝑖)) (9)

3.3 Data and Hyperparameters
The dataset consists of user ad click sequences aggregated over
a pre-defined time window for a large-scale advertising program.
Only sequences above a minimum length are considered and maxi-
mum sequence length is bounded to recent 𝑛 events. We split users
into train, validation and test sets in an 80:10:10 ratio. The mod-
els train on TensorFlow in a distributed multi-machine setup with
NVIDIA V100 GPUs using synchronous weight updates. The loss
is computed and optimized using AdamW [23] optimizer with 𝛽1
as 0.9 and 𝛽2 as 0.95. We clip the global norm of the gradients at
1.0. Decoupled weight decay with a rate of 0.1 is applied. Unless
otherwise mentioned, we use a fixed learning rate of 1𝑒 − 4 after an
initial warmup schedule that steadily increases learning rate from
0 to 1𝑒 − 4 over the first epoch.

4 SCALING ANALYSIS
4.1 Model Size
We scale the model size in terms of the number of non-embedding
trainable parameters in the Transformer by increasing the number
of layers, the latent state dimension and number of heads. We
vary the number of non-embedding parameters over 4 orders of
magnitude and train each model till convergence on the entire
training dataset, which is the upper bound of the available data.
Table 1 shows the different model configurations and their test loss
at convergence. We note that the performance varies only weakly
with the individual layer hyperparameters but strongly with the
overall model non-embedding parameter count as shown in [5].

Table 1: Parameter Scaling Configurations

Parameters
(non embedding)

Layers Latent
Dimension

Heads Batch Size
(global)

Epochs Test Loss

54,240 4 32 4 16384 20 7.631
410,240 2 128 4 16384 20 7.595
3,186,432 4 256 8 16384 20 7.535
6,359,552 2 512 4 16384 20 7.478
12,664,320 4 512 8 16384 20 7.493
25,273,856 8 512 8 16384 20 7.466
85,136,640 12 768 8 16384 20 7.425

Plotting the test loss at convergence follows a power-law rela-
tionship with number of non-embedding parameters at constant

dataset size, as shown in Figure 1. We extrapolate the power-law
trend observed between 50k parameters and 25M parameters to
85M parameters and highlight that the estimated test loss of 7.429
closely matches the experimental value of 7.425. This implies that
even at 85M parameters, we are not bottlenecked by the dataset size,
indicating that a billion-scale parameter model is unlikely to overfit
due to a data bottleneck. However, we acknowledge that this trend
must eventually saturate, beyond which it would not be useful to
further increase model size under the current training framework,
as we are upper bounded in terms of organically available data.

105 106 107 108

7.45

7.5

7.55

7.6

7.65

Non-embedding Parameters
Te
st
lo
ss

Figure 1: Parameter Scaling

4.2 Data Size
We analyze the impact of data scaling by considering different train
dataset sizes, created by considering 0.1%, 1%, 25% and 100% of
available user sequence data. The learning rate is kept constant and
we scale number of GPUs with increased model size to keep the
global batch size constant. We train three model sizes, with 410K,
3.1M and 12.6M trainable parameters, until convergence on varying
dataset sizes and plot their test loss in Figure 2.

106 107
7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

Non-embedding Parameters

Te
st
lo
ss

% available data
0.1%
1%
25%
100%

Figure 2: Data Scaling

AdKDD ’23, August 7, 2023, Long Beach, CA Sharad Chitlangia, Krishna Reddy Kesari, and Rajat Agarwal

We obtain three key insights from Figure 2 - first, we observe
that larger models are more data efficient. That is, larger models
require a smaller dataset to achieve a fixed test loss. Second, smaller
models benefit more from increasing dataset size when compared
to larger models. Finally, for a fixed model size, increasing dataset
size shows diminishing returns in terms of test loss improvement,
suggesting that to maximize performance, model size and dataset
size must be scaled in tandem. However, in the practical setting of
activity sequencemodels, where the dataset size is upper bounded, it
would still be useful to train the largest possible model to maximize
performance within the bounds suggested in Section 4.1. As larger
model training requires significantly more compute, we explore the
compute allocation strategy in the next section.

4.3 Compute
In industry settings, training of models is bounded by monetary
constraints. We use wall-clock GPU-hours on a homogenous GPU
setup (NVIDIA V100s) as the measure of compute as against the
standard PetaFLOP-days, as the monetary cost incurred to train a
model in a standard cloud setup is a function of GPU wall-clock
time usage and not GPU utilization. In this section, we explore
for a fixed budget (monetary value or equivalent GPU-hours), the
efficient scaling strategy for model size and data parallelism (global
batch size) to achieve the lowest possible test loss. Scaling up model
size at a fixed global batch size would require more GPUs to run
in parallel, reducing the number of serial gradient update steps
that can performed in a fixed GPU-hour budget. Alternatively, one
could reduce global batch size and number of parallel GPUs for
a model and increase the number of serial steps. We analyze this
trade-off by fixing the number of GPU-hours and varying the con-
figuration across different model sizes and global batch sizes in a
way that GPU utilization stays maximized. . We plot the test loss
for different model sizes at maximum GPU utilization in Figure 3
for configurations detailed in Table 2. We note that the learning
rate is scaled proportionately with the global batch size [24].

Table 2: Compute configurations at 16 GPU-hours

Configuration GPUs Time
(minutes)

Learning
rate

1 64 15 0.0008
2 32 30 0.0004
3 16 60 0.0002
4 8 120 0.0001

Table 3: Benchmarking large models at batch size < 𝐵𝑚𝑖𝑛

Parameters GPUs Time
(minutes)

Batch size
(per GPU)

Test loss

201,649,152 8 120 48 7.732
85,136,640 8 120 128 7.601
25,273,856 8 120 256 7.554
410,240 8 120 960 7.677

We draw two key insights from Figure 3 - first, for fixed number
of parallel GPUs and wall-clock time, larger models reach a lower
test loss - indicating that sample efficiency (1/(number of serial
gradient updates × global batch size)) increases with model size for
a target test loss. Second, for all model sizes, increasing number
of serial gradient updates is more effective than increasing batch
size. Hence, the efficient scaling strategy would suggest scaling
up model size while lowering the global batch size for a given
compute budget. However, reducing batch size to extremely low
numbers would make the gradient updates noisier. We empirically
demonstrate in Table 3 that lowering batch size below a minimum
threshold 𝐵𝑚𝑖𝑛 for a larger model leads to worse performance than
a smaller model at fixed compute.

106 107

7.6

7.7

7.8

7.9

8

Non-embedding Parameters

Te
st
lo
ss

Compute Configuration
1
2
3
4

Figure 3: Compute Scaling

While scaling up model size at 𝐵𝑚𝑖𝑛 ensures efficient allocation
of compute between data parallelism and serial steps, a larger model
at 𝐵𝑚𝑖𝑛 requires a certain wall clock time before its loss outperforms
smaller models due to more serial gradient steps in smaller models
early on in the training. We define𝑊𝑚𝑖𝑛 as the minimumwall clock
time required for a model with batch size 𝐵𝑚𝑖𝑛 to outperform all
smaller models trained at their individual 𝐵𝑚𝑖𝑛 configuration for
the same wall clock time.

We empirically demonstrate the existence of𝑊𝑚𝑖𝑛 in Figure 4,
where the larger 25M parameter model at batch size 16k eventually
achieves a lower test loss than smaller 410k parameter model with
a more compute efficient configuration of batch size 5k, where
both batch sizes are greater than 𝐵𝑚𝑖𝑛 . Further extending to a fixed
compute budget, Table 4 demonstrates that a larger 25M parameter
model with batch size 8K achieves a lower test loss at the end of 30
minutes compared to a smaller 410K parameter model with batch
size 7K at the end of 120 minutes on the wall-clock, indicating that
the𝑊𝑚𝑖𝑛 for the 25M parameter model lies within the regime of
the allocated compute budget even when data parallelism for the
larger model was set at a more inefficient configuration than the
smaller model.

Hence, the efficient use of compute requires training the largest
possible model for which both𝑊𝑚𝑖𝑛 and 𝐵𝑚𝑖𝑛 are supported within
the given compute budget.

Scaling Generative Pre-training for User Ad Activity Sequences AdKDD ’23, August 7, 2023, Long Beach, CA

2000 4000 6000 8000 10000
Wall Clock Time (seconds)

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

Te
st

 lo
ss

params:25M,batch:16K
params:410K,batch:5K

Figure 4: Largermodel outperforms smallermodel after𝑊𝑚𝑖𝑛

wall-clock time

Table 4: Compute efficiency when 𝐵𝑚𝑖𝑛 and𝑊𝑚𝑖𝑛 are satisfied
at fixed GPU-hours

Parameters GPUs Time
(minutes)

Batch size
(global)

Test loss

25,273,856 32 30 8192 7.623
410,240 8 120 7680 7.677

5 DOWNSTREAM TASK EVALUATION
We evaluate the performance of the learnt user representations on
two downstream tasks - first, where accurate labels are available for
training a classifier and another where no task specific fine-tuning
is possible due to lack of labels.

5.1 Linear Separability in Classification
In this experiment, we benchmark the user embeddings on the user
conversion prediction task based on linear separability. We train a
linear binary classifier on the learnt user embeddings (output of the
last timestep in the sequence) to predict if the user converts, and
evaluate the efficacy based on AUC-ROC. Higher AUC-ROC implies
that the embeddings have better linear separation with respect to
the downstream conversion label.

5.2 Click bot detection
Due to absence of accurate ground truth labels, supervised tech-
niques fall short in bot detection scenarios. While labeling indi-
vidual samples accurately may not be possible, multiple domain-
knowledge based heuristics can be applied to reliably evaluate if a
given group of users are robotic. Hence, we cluster self-supervised
user embeddings using k-means and clusters of users based on
these heuristics are marked as robotic.

We calibrate the heuristics to achieve a fixed False Positive Rate
(FPR), which refers to the fraction of genuine human traffic flagged
as robotic by the algorithm. Since we do not have ground truth
labels, FPR is approximated by using converting users as a proxy for
the distribution of human labels. The fraction of converting clicks

Table 5: Lift over downstream task performance relative to
54K model

Params IVR @ fixed FPR pConversion AUC

3,186,432 +1.63 % +0.02 %
6,359,552 +3.44 % +2.51 %
85,136,640 +4.09 % +3.57 %

50k 3MM 6MM 85MM
0

0.2

0.4

0.6

0.8

1

Parameters (non embedding)

Re
la
tiv

e
Bo

tU
se
rC

ou
nt

Low Click
Medium Click
High Click

Figure 5: Relative count of bot accounts flagged across click
sequence lengths

that were marked as robotic is computed as FPR. We also define
Invalidation Rate (IVR) as the fraction of total ad clicks flagged as
robotic by the algorithm at the program level. For a fixed operating
point FPR, the model with higher IVR indicates better robotic recall.

5.3 Results
We consider embeddings from models described in Section 4.1,
where we scale the non-embedding parameter count over 4 orders
of magnitude on the entire training data and train till convergence.
Table 5 shows the downstream performance of the models on the
conversion prediction and the robot detection tasks.

Unsurprisingly, lower test loss of the larger models translates
to better downstream performance for both supervised task of
conversion prediction and unsupervised task of robot detection. We
note that scaling patterns on downstream tasks do not necessarily
follow the power law, making it challenging to predict the potential
performance gains from a larger size model apriori.

Figure 5 shows the relative count of bot accounts flagged by
individual models, split into different click sequence length buckets.
It is evident that the larger models are highly effective in identify-
ing bot activity with low click bucket bot detection improving by
42% and medium click bot detection improving by 20% across the
model sizes considered. This indicates that larger models are able to
learn better representations for smaller sequence lengths and help
disambiguate more sophisticated bot patterns with limited data.

6 DISCUSSION
We show that the test loss of activity sequence models trained
using generative pre-pretraining follows a power-law relationship
with model size at constant dataset size, similar to observations
made in text, images and audio domains [5, 6, 9]. Unlike text and

AdKDD ’23, August 7, 2023, Long Beach, CA Sharad Chitlangia, Krishna Reddy Kesari, and Rajat Agarwal

images domains where increasing dataset size is relatively easier
by gathering data from the web, user activity sequence datasets
have a hard upper bound on dataset size, governed by number
of users interacting with the ad program. Thus, increasing model
sizes would eventually lead to overfitting, saturating the power law
curve. However, our data scaling experiments show that present
model sizes do not show saturating behavior even on 1% dataset size,
indicating that there is significant room for model scaling at our
current dataset size. We also show that larger models are more data
efficient, achieving a lower test loss at fixed dataset size, consistent
with the trends observed in text and image domain [5, 6] with a
key distinction that smaller models benefit more from increased
data in the activity sequence domain.

As monetary constraints are a key consideration in compute
scaling in most industrial settings, we presented a strategy to allot
fixed GPU-hours across model size and global batch size. In contrast
to observations in natural language models [5], we observe that
scaling serial gradient update steps are more effective than batch
size, as long as the batch size is above 𝐵𝑚𝑖𝑛 . Compute efficient
training of activity sequence models involves limiting the number
of GPUs such that a global batch size of 𝐵𝑚𝑖𝑛 is achieved, and
picking a model size such that training is performed for at least
𝑊𝑚𝑖𝑛 wall clock time. Thus, compute efficient training stops far
short of convergence, as highlighted to also be the case in natural
language and computer vision models. While larger models have
been shown to be sample efficient [5, 6, 9], we show that the same
translates to activity sequence models, even under an additional
constraint of fixed GPU-hours.

Finally, we show performance on downstream tasks of bot de-
tection and conversion prediction improves with generative pre-
training of larger model sizes. While we obtain performance gains,
they do not follow a power law relationship, making it difficult
to predict performance gains on business tasks with model size
scaling. This observation is also consistent with findings in the
text domain where just scaling model size has shown significant
improvements in downstream task performance [8] that may not
always follow the power law.

7 CONCLUSION AND FUTUREWORK
We presented model, data and compute based scaling properties
for generative pre-training of user activity sequence Transformer
models and demonstrated how scaling translates to better next
event prediction efficacy which in turn leads to better downstream
performance on advertising tasks.

In future work we plan to to study scaling properties with respect
to activity sequence lengths, by using longer time windows as
a mechanism to scale the current bounded dataset size. We will
also experiment with more efficient training strategies that help
improve over the current power law, while reducing training costs.
Finally, with recent work on joint representation learning of time-
varying sequence data and fixed tabular data usingmasked language
modeling [4], we will attempt to study if scaling properties from
this work also generalize to other pre-training objectives.

REFERENCES
[1] Gligorijevic, Djordje, Jelena Gligorijevic, and Aaron Flores. Time-Aware

Prospective Modeling of Users for Online Display Advertising. arXiv preprint

arXiv:1911.05100 (2019).
[2] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in neural information processing systems, pp. 5998-6008. 2017.

[3] Liao, Yiping. On the Effectiveness of Self-supervised Pre-training for Modeling
User Behavior Sequences. In AdKDD, 2020.

[4] Agarwal, Rajat, Anand Muralidhar, Agniva Som and Hemant Kowshik. Self-
supervised Representation Learning Across Sequential and Tabular Features
Using Transformers. In NeurIPS First Table Representation Learning Workshop,
2022.

[5] Kaplan, Jared, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeff Wu and Dario Amodei. Scaling Laws
for Neural Language Models. ArXiv abs/2001.08361 (2020): n. pag.

[6] Zhai, Xiaohua, Alexander Kolesnikov, Neil Houlsby and Lucas Beyer. Scaling
Vision Transformers. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2021): 1204-1213.

[7] Henaff, Olivier. Data-efficient image recognition with contrastive predictive
coding. In International conference on machine learning, pp. 4182-4192. PMLR,
2020.

[8] OpenAI. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023): n. pag.
[9] Pu, J., Yang, Y., Li, R., Elibol, O., Droppo, J. (2021) Scaling Effect of Self-Supervised

SpeechModels. Proc. Interspeech 2021, 1084-1088, doi: 10.21437/Interspeech.2021-
1935

[10] Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, et al. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499 (2016).

[11] Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, et al. Training Compute-Optimal
Large Language Models. ArXiv abs/2203.15556 (2022): n. pag.

[12] Henighan, Tom, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob
Jackson, Heewoo Jun et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701 (2020).

[13] Tay, Yi, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang,
Hyung Won Chung et al. Ul2: Unifying language learning paradigms. In The
Eleventh International Conference on Learning Representations. 2022.

[14] Sorscher, Ben, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos.
Beyond neural scaling laws: beating power law scaling via data pruning. Advances
in Neural Information Processing Systems 35 (2022): 19523-19536.

[15] Yao, Tiansheng, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya
Menon, Lichan Hong et al. Self-supervised learning for large-scale item rec-
ommendations. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pp. 4321-4330. 2021

[16] Guo, Wei, Can Zhang, Zhicheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Ruiming
Tang, Xiuqiang He and Rui Zhang. MISS: Multi-Interest Self-Supervised Learning
Framework for Click-Through Rate Prediction. 2022 IEEE 38th International
Conference on Data Engineering (ICDE) (2021): 727-740.

[17] Chitlangia, Sharad, Anand Muralidhar and Rajat Agarwal. Self Supervised Pre-
training for Large Scale Tabular Data. In NeurIPS First Table Representation
Learning Workshop, 2022.

[18] Ardalani, Newsha, Carole-Jean Wu, Zeliang Chen, Bhargav Bhushanam and
Adnan Aziz. Understanding Scaling Laws for Recommendation Models. ArXiv
abs/2208.08489 (2022): n. pag.

[19] Naumov, Maxim, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang et al. Deep learning
recommendation model for personalization and recommendation systems. arXiv
preprint arXiv:1906.00091 (2019).

[20] Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning,
pp. 8748-8763. PMLR, 2021.

[21] Shin, Kyuyong, Hanock Kwak, KyungHyun Kim, Su Young Kim and Max Nihl’en
Ramstrom. Scaling Law for Recommendation Models: Towards General-purpose
User Representations. ArXiv abs/2111.11294 (2021): n. pag.

[22] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[23] Loshchilov, Ilya, and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017).

[24] Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Framework
	3.1 Constructing Input Sequences
	3.2 Training Objective
	3.3 Data and Hyperparameters

	4 Scaling Analysis
	4.1 Model Size
	4.2 Data Size
	4.3 Compute

	5 Downstream Task Evaluation
	5.1 Linear Separability in Classification
	5.2 Click bot detection
	5.3 Results

	6 Discussion
	7 Conclusion and Future Work
	References

